skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blake, Rachael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30‐yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human‐centric field methods. We believe that the combination of instrumentation for remote data collection and machine learning models to process such data represents an important opportunity for NEON to expand the scope, scale, and usability of its biodiversity data collection while potentially reducing long‐term costs. In this manuscript, we first review the current status of instrument‐based biodiversity surveys within the NEON project and previous research at the intersection of biodiversity, instrumentation, and machine learning at NEON sites. We then survey methods that have been developed at other locations but could potentially be employed at NEON sites in future. Finally, we expand on these ideas in five case studies that we believe suggest particularly fruitful future paths for automated biodiversity measurement at NEON sites: acoustic recorders for sound‐producing taxa, camera traps for medium and large mammals, hydroacoustic and remote imagery for aquatic diversity, expanded remote and ground‐based measurements for plant biodiversity, and laboratory‐based imaging for physical specimens and samples in the NEON biorepository. Through its data science‐literate staff and user community, NEON has a unique role to play in supporting the growth of such automated biodiversity survey methods, as well as demonstrating their ability to help answer key ecological questions that cannot be answered at the more limited spatiotemporal scales of human‐driven surveys. 
    more » « less
  2. Abstract During the 21st century, human–environment interactions will increasingly expose both systems to risks, but also yield opportunities for improvement as we gain insight into these complex, coupled systems. Human–environment interactions operate over multiple spatial and temporal scales, requiring large data volumes of multi‐resolution information for analysis. Climate change, land‐use change, urbanization, and wildfires, for example, can affect regions differently depending on ecological and socioeconomic structures. The relative scarcity of data on both humans and natural systems at the relevant extent can be prohibitive when pursuing inquiries into these complex relationships. We explore the value of multitemporal, high‐density, and high‐resolution LiDAR, imaging spectroscopy, and digital camera data from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) for Socio‐Environmental Systems (SES) research. In addition to providing an overview of NEON AOP datasets and outlining specific applications for addressing SES questions, we highlight current challenges and provide recommendations for the SES research community to improve and expand its use of this platform for SES research. The coordinated, nationwide AOP remote sensing data, collected annually over the next 30 yr, offer exciting opportunities for cross‐site analyses and comparison, upscaling metrics derived from LiDAR and hyperspectral datasets across larger spatial extents, and addressing questions across diverse scales. Integrating AOP data with other SES datasets will allow researchers to investigate complex systems and provide urgently needed policy recommendations for socio‐environmental challenges. We urge the SES research community to further explore questions and theories in social and economic disciplines that might leverage NEON AOP data. 
    more » « less
  3. Abstract It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building. 
    more » « less